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REAL GAS COMPUTATION USING AN ENERGY RELAXATION
METHOD AND HIGH-ORDER WENO SCHEMES

PHILIPPE MONTARNAL * AND CHI-WANG SHU'

Abstract. In this paper, we use a recently developed energy relaxation theory by Coquel and Perthame
and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of
real gas. The main idea is an energy decomposition into two parts: one part is associated with a simpler
pressure law and the other part (the nonlinear deviation) is convected with the flow. A relaxation process is
performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic
decomposition for the high order WENO schemes is performed on the characteristic fields based on the first
part. The algorithm only calls for the original pressure law once per grid point per time step, without the
need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples

are shown to illustrate the effectiveness of this approach.
Key words. Euler equations, real gas, weighted essentially non-oscillatory schemes.
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1. Introduction. In this paper we consider the Euler equations for a real compressible inviscid fluid,

Op+div(pu) =0, t >0,z € RY,
Orpu + div (pu ® u + p) =0,
(1.1) 0,E + div (E + p)u) = 0,

1
E = Splul* + pe,

where the quantities p, u, p, E and ¢ represent the density, velocity, pressure, total energy and specific internal
energy, respectively. In addition, there is an equation of state (EOS) of the form p = p(p, €) associated with

a strictly convex entropy ps(p, €) which satisfies the following entropy inequalities
(1.2) O¢ps + div (psu) < 0.
The pressure law is furthermore assumed to satisfy

(1.3) pe(p.e) >0, p(p,0) = 0 and p(p, o0) = oo.

In the literature research has been done in order to extend classical schemes designed for perfect gas to
real gases. Collela and Glaz [1] extended the numerical procedure for obtaining the exact Riemann solution
to a real-gas case, Grossman and Walters [7], Liou, van Leer and Shuen [13] extended the method of flux-

vector splitting and flux-difference splitting, Montagné, Yee and Vinokur [16] developed second-order explicit
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shock-capturing schemes for real gas, Glaister [5] presented an extension of approximate linearized Riemann
solver with different averaged matrices, while Loh and Liou [15] used the generalization of their Lagrangian

approach (originally proposed for perfect gas) to obtain the real gas Riemann solution.

Most of the previous proposed methods would require a computation of the pressure law and its deriva-
tives, or a Riemann solver. This is not only costly but also problematic when there is no analytical expressions

of the pressure law (for example if we have only table values).

Recently Coquel and Perthame [2] have introduced an energy relaxation theory for Euler equations of
real gas. The main idea is to introduce a relaxation of the nonlinear pressure law by considering an energy
decomposition under the form ¢ = €1 + 5. The internal energy ¢; is associated with a simpler pressure law
p1 (which is taken as the y-law in this paper), while €2 stands for the nonlinear perturbation and is simply
convected by the flow. These two energies are also subject to a relaxation process and in the limit of an

infinite relaxation rate, one recovers the initial pressure law p.

From this general framework, Coquel and Perthame have also deduced the extension to general pressure
laws of classical schemes for polytropic gases, which only uses a single call to the pressure law per grid point
and time step. No derivatives of the pressure law or any Riemann solvers need to be computed. Another
advantage of their approach is that its implementation does not depend on the particular expression of
the equation of states. For the first order Godunov scheme, they have shown that this extension satisfies
stability, entropy and accuracy conditions. Numerical examples have been provided using first order schemes
by A. In [9].

For Euler equations of polytropic gas, high order ENO (essentially non-oscillatory) and WENO (weighted
ENO) schemes [8, 18, 19, 20, 14, 10, 21] have been quite successful in providing high resolution results for
complicated flow structures and shocks. The idea of ENO schemes is to adaptively choose local stencils so that
interpolation across a discontinuity is avoided as much as possible. WENO uses a nonlinear combination of all
stencils to improve upon accuracy and smoothness of numerical fluxes while maintaining the non-oscillatory

behavior of ENO near a discontinuity.

The aim of this paper is to study the implementation of this relaxation method with high order WENO

schemes [10] for real gases. One and two dimensional numerical examples will be given.

In Section 2 we provide the general framework of the energy relaxation theory of [2], followed by a short
description of high order WENO schemes [10]. We then give the details of the construction of the relaxed
WENO schemes for general gases. In Section 3 numerical examples are given. We start with a description
of the different equations of states used in this paper, followed by one dimensional shock tube test problems.
Two dimensional test cases of a smooth vortex, to test the accuracy of the schemes, and of the double Mach
reflection problem, are then presented. Concluding remarks are given in Section 4. In the appendices, we

give the expressions of the Roe matrices for the relaxation system (A) and the two molecular vibrating gas

(B).

2. Implementation of the energy relaxation method with WENO.

2.1. Energy relaxation theory. The principle of the energy relaxation theory developed by Coquel
and Perthame [2] is to find a pressure law p;(p*,e7) (simpler than p, typically a polytropic law) and an
internal energy ¢(p*,e7) so that the system (1.1) and the entropy inequality (1.2) can be recovered, in the

limit of an infinite relaxation rate \ (called the equilibrium limit), from the following system (called the



relazation system):

oy p” + div (p)‘u)‘) =0, t>0,2€RY

o ut + div (prut @ ut + p}) =0,

(2.1) QBT + div (B +p)ut) =A™ (23 — o(p*, 7))
D<) + div(pued) =~ (3 — 6™ D))
B = L WP 400

where p1(p*, 1) = (71 —1)p*e? with 1 a given constant greater than 1. One can prove [2] that the relaxation

system (2.1) can be supplemented by entropy inequalities under the form
i S+ div(p*Tut) < RED* i= —AM (S50, — B,)(e2 — 60, 2D))

where s1(p,e1) = p”*~!/e; and the specific entropy X denotes an arbitrary function in C* (IRi) such that
pY is convex in (p, pe1, pea) and that can be written under the form ¥ = ¥(s1(p, €1),2). RED? represents
the Rate of Entropy Dissipation.

Formally, the original Euler system (1.1) will be recovered at A — +oco with
(2.2) e=¢e1+ex=c¢1+d(p,er1),

provided that we have the following condition (called the consistency condition)

(2.3) p(pse1+¢(p,e1)) = pi(p,e1) = (1 — 1)per.

This last condition can be fulfilled for any given choice of y; > 1.

But in addition to the conservative system (1.1), one also wants to recover at the limit the entropy
inequality (1.2). The following result, due to Coquel and Perthame [2], gives this last condition under a
characterization of the admissible ;.

THEOREM 2.1. Assuming that v, satisfies

,E
9

71 >sup, . [(p,e) where T'(p,e) =

(2.4) €
Y1 > sup, . v(p,e) where (p,e)

+ =

T
P

SRS

P.e
p

provided that v, is finite, we then have
(i) there exists a (unique) specific entropy ¥(s1,€2) such that at equilibrium (e = €1 + ¢(p,€1))

s(p, 5) = E(Sl(pa 61)7 (b(pa 51)))

(i) this entropy is uniformly compatible with the relazation procedure, i.e.:

RED* <0, for all A > 0.

2.2. WENO schemes. We use the fifth order WENO scheme in [10]. For a scalar conservation law
(2.5) w+ f(u)y =0

the derivative f(u), at the grid point x = z; is approximated by a conservative flux difference

(2.6) fW)olo=a; = é (fj-{—% - fj—%) .



The WENO numerical flux fj +1 is computed as follows. For a positive wind direction f'(u) > 0, we first

define 3 third order numerical fluxes:

iy = %f(uj—Q) - zf(uj—l) + %f(w),

6
(2.7) }i% = —%f(ujfl) + gf(uj) + %f(um),
ey = 35s) + 2 flugin) = 57 us2).

A third order ENO scheme will result if we choose one of the three third order fluxes in (2.7) adequately,
according to the size of divided differences [19]. On the other hand, a fifth order linear scheme will result if

we choose the flux as

(2.8) }Tgar = dlfjl_;,_% + dzfj2+% + d3ff+%'
with

1 3 3
2.9 dy = — do = = ds = —.
(2.9) =10 27y 710

The fifth order WENO scheme results if we choose the numerical flux as

(2.10) Fiv

with w; defined by

(SIS

_ £1 £2 £3
=wifjpy twafiy twsfig,

Qg . d;
(2.11) wi = 7Z§:1 o o = 7(6_’_@)27
and
13 o1 2
B = E(f(ui_Z) = 2f(ui—1) + fwi))” + Z(f(ui_g) —Af(ui—1) + 3f(w;))?,
(212) B = 1o (i) = 26 () + flussa)? + 3 (Fr) = fluirn)
fs = %(f(u’) = 2f(ui1) + f(uir2))” + i(3f(uz) — 4f (uir1) + f(uiv2))?

€ in (2.11) is taken as 1076 in all our numerical examples, as was done in [10]. The weights in (2.11) are
chosen so that in smooth regions (including at smooth extrema), the WENO flux (2.10) behaves similarly
as the linear flux (2.8) and is uniformly fifth order accurate. Near shocks, however, the WENO flux (2.10)
behaves similarly as an ENO flux, in the sense that any stencil crossing a discontinuity has a near zero
weight. For details of the derivation, see [10, 21].

If the wind direction is negative, f'(u) < 0, the procedure is symmetric to the case with f'(u) > 0, with

respect to the location z; 1. In general, a flux splitting is used

(2.13) flu) = fH(w) + f~(u)
such that f(u) has a positive wind direction and f~(u) has a negative wind direction:
d d
2.14 — T > —f <.
(2.14) =0 Lpw <o
The procedure described above can then be applied to f*(u) and f~(u) separately. The simplest flux
splitting is the Lax-Friedrichs splitting:

(f (u) £ au)

(2.15) INOEE



where
a =max|f'(u)].
u

Notice that while first and second order schemes with a Lax-Friedrichs splitting is quite dissipative, higher
order schemes based on the Lax-Friedrichs fluxes usually give very good results. We use Lax-Friedrichs fluxes
in this paper.

For systems of conservation laws in this paper, we use both a component-wise version, where the pro-
cedure described above is applied to each equation in the system separately, and a characteristic version,
where locally we apply the procedure described above on characteristic projections. For details about how

to perform a local characteristic procedure, see for example [18, 19, 10].

2.3. Construction of the relaxed WENO scheme. The procedure to solve the Euler system (1.1)
within the framework of the energy relaxation theory is the following. Given the numerical equilibrium

solution at the time level t"
(2.16) ol "), (e, 1), e(x, ),

this approximation is advanced to the next time level "1 = ¢ + At in two steps.
o First step: relaxation. The two internal energies €1 (z,¢") and ea(x,t™) are obtained by (2.2) and

the consistency condition (2.3):

p(p(z,t"), (x, "))
(11 = Dp(z,t7)
ea(x,t") = e(z, t") — e1(x, t").

2.17) erle ) =

Notice that this step involves just one call to the pressure law per grid point and does not involve
any derivatives of the pressure law or any iterations.
e Second step: evolution in time. For t" < ¢ < t"*!, we solve the Cauchy problem for the relaxation

system (2.1), with zero on the right side:

c”)‘tpA + div (p”\u’\) =0, t>0,ze R
orprut + div (p)‘u)‘ ® u* —|—p{‘) =0,
(2.18) 0B} + div (B} + p))u?) =0,

orprey + div(prured) =0,

B = 2 W + e,

and the initial data

(2.19) plx, t"), u(x, t"),e1(xz, t"), e2(x, t"),

and we obtain at time "1~

(2.20) p(x, ") (a7 T) ey (2, 7T ), e (w, £V,
At last, we compute the equilibrium solution at time t**! by

pla, t"h) = p(a, t"+17),
(2.21) u(w, ") = u(z, "),
€(x7tn+1) = 51(x7tn+1_) + EQ(xvtTH_l_)'



REMARK 1. The first step is clearly a relaxation phase, as it is equivalent to the solution of the following
ODE problem for t > t"

dtp)\ = 0)

diprut =0,

LED = 3 () — 6%, 2)
diprey = =Ap (65 — (7)),

(2.22)

with initial data at time level t™
(2.23) pla, ") u(z, "), e1(x, t" ), ea(x, t77).
and to let X — +oo.

We now describe the numerical method we will use for the step of evolution in time. Although our
numerical results concern both one and two dimensional problems, for simplicity of presentations we shall
restrict our description to one space dimension. As we are using the finite difference version of WENO
schemes in [10], extensions to two and more spatial dimensions are simply done dimension by dimension.
Essentially, the two dimensional code is the one dimensional code with an outside “do loop”.

We have to solve for " <t < t"*! the following system of four equations

U + 8, F(U) =0,

(2.24)

+ initial conditions given by (2.19),
where
(2 25) U= (paPU7E17952)Ta

T
F(U) = (pu, pu* + p1, (E1 + p1)u, pues)
In order to solve the ordinary differential equation

(2.26) %U = L(U),

where L(U) is a discretization of the spatial operator, we use a third-order TVD Runge-Kutta scheme [18].

REMARK 2. We have two possibilities for the placement of the relaxation step: each Runge-Kutta
inner stage or each time step. With the first example of section 3.3, we show that the two approaches give
nearly identical results in accuracy. Of course the second approach is less costly. We thus perform all our
calculations using the second approach.

We now discretize the space into uniform intervals of size Az and denote x; = jAz. Various quantities
at z; will be identified by the subscript j.

We use the WENO procedure described in the previous subsection to obtain the spatial operator L;(U)
which approximates —0,F(U) at x;. We have tested several possibilities for the definition of L(U) based
on WENO schemes. The first one is to use a WENO Lax-Friedrichs scheme with a full characteristic
decomposition. For this purpose we need to compute a Roe matrix for the system (2.24) and its eigenvalues
and eigenvectors. The details of this derivation are included in Appendix A.

The other possibility is to compute the first three components of the numerical flux Fj1+ 1 Fj2+ 1 13‘]?’+ 1
by using a WENO Lax-Friedrichs scheme with a decomposition on the Euler system characteristics and to
obtain the last numerical flux F;ﬂrl with a scalar WENO Lax-Friedrichs scheme. This is possible because

2
the first three equations of system (2.24) are independent from the last one.



REMARK 3. We have also tried to compute the last numerical fluz by using a first order scheme specially
designed in order to preserve the mazimum principle for eo [11]. But with this approach, we lose the accuracy
of the high-order WENO scheme also for the other variables.

REMARK 4. In order to make comparisons in the numerical results we have also implemented a WENO
Laz-Friedrichs scheme with a full characteristic decomposition for a two molecular vibrating gas (see next
section for a description of the related EOS). For this purpose we need a definition of the corresponding Roe
average matriz. We give it in Appendiz B. For the numerical comparisons for the other real gases we use a

component-wise WENQO Lazx-Friedrichs scheme which requires only the computation of the sound velocity

(2.27) c= 1/p,p—l—pI%.

3. Numerical results.

3.1. Description of the different equations of states. We present here several equations of states
which we will use in the computation. We find the second one in the paper of In [9], while the third one
comes from Glaister [4]).

e Polytropic ideal gas. The equation of states for a polytropic ideal gas (also called perfect gas) is the

following

(3.1) p(p,e) = (v — 1)pe.

Then we have

(3.2) pp=0—1e pe=(-1p

Air under normal conditions (p and T moderate enough) can be considered as a perfect gas withy =7/5 =14
(approximately a mixture of two diatomic molecular species: 20% of Oz, 80% of N3).

o Two molecular vibrating gas. When the temperature increases the vibrational motion of oxygen and
nitrogen molecules in air becomes important, and specific heats vary with temperatures. So that one must

consider the following thermally perfect, calorically imperfect model for two molecular vibrating gas

(3.3) plp,<) = rpT (E)
where the temperature T is given by the implicit expression

O yip

3.4 e=cIT+p—p—
(3.4) pe= el Ty 1

)

with r = 287.086 J - kg~ - K=1, CI" = /(v — 1), Yir = 1.4, Opip = 102 K, @ = . Then we have

rp

(35) p,p = TT(E)7 p75 = m

e Osborne model. R. K. Osborne from the Los Alamos Scientific Laboratory has developed a quite

general equation of states in the following form [17]

(3.6) p(p,e) = (C(a1 + a2C) + E (bo + ¢ (b1 + b2() + E(co + c1()))

1
E + ¢



where E = ppe and ( = p% — 1 and the constants pg, a1, as, by, b1, b2, cg, c1, ¢po depend on the material in
question. The typical values for water are pg = 1072, a; = 3.84 x 1074, as = 1.756 x 1073, by = 1.312 x 1072,
by = 6.265 x 1072, by = 0.2133, cg = 0.5132, ¢; = 0.6761 and ¢y = 2. x 1072, Then we have

I m ((a1 + 2a2¢) + E (by + 2b2¢ + Ecy)),
(3.7)

pe =~ s (Gl +0s0) + 280 + 1),

3.2. One dimension cases.
e FExample 1. 1D Riemann problems with perfect gas.

We consider here two well-known problems which have the following Riemann type initial conditions:

(2,0) u;, ifz<0,
u(z,0) =
up ifz > 0.

The first one is Sod’s problem [22]. The initial data are
(pr,ur,pr) =(1,0,1), (pr,ur,pr) = (0.125,0,0.1).
The second one is proposed by Lax [12] with
(pr,ur,pr) = (0.445,0.698,3.528), (pr,ur,pr) = (0.5,0,0.571).

Of course for this perfect gas situation there is no need to use the relaxation model in practice. The
purpose of this test problem is to test the behavior of different relaxation models (different +’s) and differ-
ent ways of treating the relaxed system (fully characteristic and partially characteristic for the first three
equations only).

For this example, a uniform grid of 100 points are used and every 2 points are drawn in the figures.

We first give, in Table 3.1, a CPU time comparison among the traditional WENO characteristic scheme
for the perfect gas, and the WENO scheme applied to the relaxation system, both with a fully characteristic
decomposition and with a partially characteristic decomposition for the first three equations only. The
calculation is done on a SUN Ultral workstation. We can see that while a fully characteristic decomposition
is significantly more costly, the partially characteristic decomposition is only slightly more costly than the

WENO scheme applied to the original perfect gas Euler equations.

Case WENO Relaxed WENO with Relaxed WENO with
with characteristic full characteristic partial characteristic
Sod Shock 2.28 3.49 2.91
Lax Shock 3.32 4.93 4.08
TABLE 3.1

CPU time (in seconds) of different schemes for the Sod and Lax shock tube problems for a perfect gas.

In Figures 3.1 and 3.3, we present the comparison for the Sod’s and Lax’s shock tube problems, of the
fifth order WENO schemes, applied directly to the perfect gas Euler equations using a characteristic decom-
position, and applied to the relaxation model with v; = 3 using only partial characteristic decomposition of
the first 3 equations. We can see that the results are very close, except for the slight over- and under-shoots

in entropy for the relaxation model calculation. This indicates the feasibility of using the relaxation model.
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Fia. 3.1. Sod’s shock tube problem with WENO-LF-5 characteristic and relaxed WENO-LF-5 partial characteristic with
v1 = 3.0.

In Figures 3.2 and 3.4, we present the comparison for the Sod’s and Lax’s shock tube problems, of
the fifth order WENO schemes. The top left figure compares the full characteristic decomposition for the
relaxation model, with a partial characteristic decomposition for the first 3 equations only, for v; = 3.
We can see that the results are quite close, again indicating the feasibility of using the less costly partial
characteristic decomposition for the relaxation model. The top right figure compares the effect of different v;’s
in the relaxation model. Apparently bigger 7; corresponds to larger numerical dissipation. This indicates
that one should always choose the smallest possible v; subject to stability considerations. The bottom
figure compares the relaxation WENO results for v = 3 and a partial characteristic decomposition, with
a component-wise WENO scheme applied directly on the original perfect gas Euler equations. Although
neither uses the correct characteristic information, apparently the relaxation model results are better than
the component-wise results, especially for the Lax’s problem in Figure 3.4.

o Fxzample 2. 1D Riemann problems with real gases.

In this example we compute the solutions to the Riemann shock tube problem, for the two molecular
vibrating gas (3.3)-(3.5) and the Osborne model (3.6)-(3.7), with the following initial conditions in Table
3.2.

For this example, a uniform grid of 200 points are used and every 4 points are drawn in the figures.
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Fic. 3.2. Sod’s shock tube problem with WENO-LF-5. Comparisons of partial and full characteristic decompositions for
the relazation model with y1 = 3 (top left); v1 = 3 and y1 = 30 for the relazation model with partial characteristic decomposition
(top right); and the relazation model with partial characteristic decomposition with v1 = 3 versus the component-wise WENO

applied to the original perfect gas Euler equations.

Also, the “exact solution” in the figures are obtained with the best scheme using 2000 points.

We first give a CPU time comparison between the full characteristic decomposition for the original model
and the partial characteristic decomposition using only the first three equations of the relaxation model, for
the two molecular vibrating gas model, in Table 3.3. We can see that the partial characteristic decomposition
for the relaxed model is usually more than twice less costly than the full characteristic version for the original
system. Although the relaxed model has one more equation, it does not require the computation of the

complicated derivatives of the EOS.

In Figure 3.5 we show the comparison of the full characteristic decomposition for the original model and
the partial characteristic decomposition using only the first three equations of the relaxation model, for the
two molecular vibrating gas model, with case A initial condition. The results are almost identical, indicating
that the relaxation model with a partial characteristic decomposition works well with a much reduced cost.

In Figure 3.6 we show the comparison of the component WENO scheme on the original system, and the
partially characteristic WENO scheme on the relaxed system with v, = 2.0, for the Osborne gas model with
case A initial condition. We can see that the result of the relaxed model is much better, especially for the

density. This indicates that the relaxation model is a good one for the computation of real gases.
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Fic. 3.3. Laxz’s shock tube problem with WENO-LF-5 characteristic and relaxed WENO-LF-5 partial characteristic with
v1 = 3.0.

In Figure 3.7 we show the comparison of taking ; = 10, which satisfies the stability condition (2.4), and
~v1 = 2, which satisfies only the second inequality in the stability condition (2.4), for the partial characteristic
decomposition using only the first three equations of the relaxation model, and the Osborne gas model with
case A initial condition. We can see that the 7; = 2 results are stable and less dissipative, indicating that in
practice one does not always have to choose 77 satisfying both inequalities in condition (2.4).

We have also tested the same problems for the other initial condition cases B, C, D and E. The results

are mostly similar qualitatively as in case A. To save space we will not present the results here.

3.3. Two dimensions cases.

e Frample 3. An isentropic vortex.

This example is used to verify the accuracy of the relaxation approach, especially the placement of the
relaxation steps during time stepping. The gas is ideal but we still use the relaxation model. We consider the
following idealized problem for the Euler equations in 2D: the mean flow is p =1, p =1 and (u,v) = (1,1)
(diagonal flow). We add, to this flow, an isentropic vortex (perturbation in (u,v) and the temperature
T = p/p, no perturbation in the entropy S = P/p?):

1—7r? (v — 1)?

5 ) (=5,2), 0T = — exp(l —1?), 35 =0,

8l

€
(du, dv) = o exp( S

11
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Fic. 3.4. Lax’s shock tube problem with WENO-LF-5. Comparisons of partial and full characteristic decompositions for
the relazation model with v1 = 3 (top left); v1 = 3 and y1 = 30 for the relazation model with partial characteristic decomposition

(top right); and the relazation model with partial characteristic decomposition with v1 = 3 versus the component-wise WENO

applied to the original perfect gas Euler equations.

where (z,79) = (v — 5,y — 5), r? = 22 + %, and the vortex strength ¢ = 5. See [21].

The computational domain is taken as [0, 10,] x [0, 10], extended periodically in both directions. This
allows us to perform long time simulation without having to deal with a large domain.

It is clear that the exact solution of the Euler equation with the above initial and boundary conditions
is just the passive convection of the vortex with the mean velocity.

In Table 3.4 we show the accuracy result at ¢ = 10 (one time period). We can see that WENO for the
relaxed model with ; = 3 gives a somewhat larger error than WENO applied directly to the original system,
but the order of accuracy is correct. Moreover, to place the relaxation step for each Runge-Kutta inner stage
or just for each time step seems to give almost identical results. We have thus used the less costly version of

putting the relaxation step for every time step in all the numerical examples in this paper.

e Example 4. Double Mach reflection.

The computational domain is chosen to be [0, 4] x [0, 1], although only part of it ([0, 3] x [[0, 1]) is shown.
The reflecting wall lies at the bottom of the computational domain starting from z = 1/6. Initially a right-
moving Mach 10 shock is positioned at (x,y) = (1/6,0) and makes a 60° angle with the x-axis. For the
bottom boundary, the exact post-shock condition is imposed for the part from = 0 to z = 1/6 and a

12



Case State Density Velocity Specific internal

energy

A Left 0.066 0.0 7.22¢6
Right  0.030 0.0 1.44¢6

B Left 1.40 0.0 2.22¢6
Right 0.14 0.0 2.24¢6

C  Left 1.2900 0.0 1.95¢6
Right  0.0129 0.0 2.75¢6
D Left 1.00 0.0 2.00e6
Right 0.01 0.0 2.50e5

E  Left 0.01  2200.0 1.44e5
Right 0.14 0.0 4.00e5

TABLE 3.2

Initial conditions for the test cases for real gases

Case WENO Relaxed WENO with
with characteristic  partial characteristic
A 12.68 5.21
B 4.8 2.63
C 12.53 4.87
D 15.0 5.35
E 15.0 7.84
TABLE 3.3

CPU time (in seconds) depending on full or partial characteristic decomposition with a two vibrating molecular gas.

reflective boundary condition is used for the rest. At the top boundary of our computational domain, the
flow values are set to describe the exact motion of the Mach 10 shock. See [23] for a detailed description of
this problem.

First we present the results for a perfect gas. We compare the results using WENO directly on the
original system [10], and using it on the relaxed model with 74 = 1.5 and v; = 3.0, in Figure 3.8 for a mesh
of 480 x 120 points and Figure 3.9 for a mesh of 960 x 240 points. We can see that the relaxed model results
are quite satisfactory, although a bigger ~; results in some small oscillations.

Next, we show the results of the same problem with the two vibrating molecular gas. The purpose here
is to show that the relaxation model based algorithm does work, rather than on the details of the flow with
more physical models. The results with both a 480 x 120 grid and a 960 x 240 grid are shown in Figure 3.10.
Comparing with the results in [3], we can see that the main features such as the main shock being closer to

the bottom boundary, and the shock below the triple point being bent, are also observed here.

4. Concluding Remarks. We have applied the fifth order WENO schemes to a relaxation model
to compute the Euler equations of real gases. The algorithm does not depend on the specific form of the
equation of states and does not need to compute the derivatives of the pressure law. One and two dimensional

examples are shown to illustrate the accuracy and robustness of the algorithm.
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Fic. 3.5. Case A + two vibrating molecular gas model with WENO-LF-5 characteristic and relaxed WENO-LF-5 partial

characteristic with y; = 1.5

Nb. points WENO Relaxed WENO Relaxed WENO
each time step each R-K step

L1 error Accuracy L1 error Accuracy L1 error Accuracy

20x 20 1.07e-2 1.22e-2 1.22e-2
40 x 40  1.06e-3 3.3 2.16e-3 2.5 2.17e-3 2.5
80 x 80  6.50e-5 4.0 1.77e-4 3.6 1.78e-4 3.6
160 x 160  2.09e-6 4.9 7.57e-6 4.6 7.60e-6 4.6
TABLE 3.4

L1 error and order of accuracy att = 10 (1 period)

Acknowledgment: We would like to thank Benoit Perthame for bringing our attention to this problem

and for helpful discussions.
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Fic. 3.6. Case A + Osborne gas model with component-wise WENO-LF-5 for the original system and relaxed WENO-LF-5

partial characteristic with y1 = 2.0.

Appendix A. Roe matrix for the relaxation system.

Let us consider two states U; and U, then the Roe matrix for the relaxation system (2.24) is the following

0 1 0 0
a2
_ (n=3)% —(m=3)pu  (m-1) 0
(A.1) AU, U,) = . 2 2 :
-+ Mm-1)75) Hi-Mm-Ha* nua 0
—E&2U Eo 0 U
where the averaged state p, u, H, are defined by
(A2) p = VAIVEr = oqu+ oy,

Hy = oHy, + o Hy,, & = qey, + arer,,
with

(A3) H1 = (e}/i_pl)/pv

_ Pl . _ _ \VPr
o=y ar=l-= 50
The four eigenvalues of A are
(A4) ap=u—¢ a2 =1Uu, A3 =U+C, a4 = U,
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Fic. 3.7.
where the averaged sound speed ¢ has the usual expression
_ Y1P1
(A.5) c= .
p
A set of right eigenvectors can be
1 1
. u
_ u—=c _ _
(AG) ™ = H e , T2 = 17,_2 , '3 =
_ 2
13 0

%(b1+%) 1—b
—l(ﬂbg-i-%) boii
- 2 c = u _
(A7) ll = b2 ) 12 = 2 y U3 =
o2 —by
2
0 0
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Case A + Osborne gas model with the relaxed WENO-LF-5 partial characteristic with v1 = 10.0 and 1 = 2.0.

1 0
}1 +c Ry = 0
H + ac 0
€2 1
%(bl - %) —&5b1
—%(’U,bg - %) - Equibo
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Density WENO-LF-5 charac.

0.5

30 contour$¥rom 1.4 to 2070 Grid:480x120 t=0.2

Density relaxed WENO-LF-5 partial charac., gammal=1.5

0.5

30 contourdfrom 1.4 to 2070 Grid:480x120 t=0.2

Density relaxed WENO-LF-5 partial charac., gammal1=3.0

where

(A.8) by = Ay, T

Appendix B. Roe matrix for a two molecular vibrating gas.

Let us consider two states U; and U,., then the Roe matrix for an Euler system of real gas is the following
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Density WENO-LF-5 charac.

0.5

T T T T T T T T T \ T - :;17”
ols 115 2 2l5

30 contours from 1.4 t0 20.0 Grid:960x240 t=0.2

Density relaxed WENO-LF-5 partial charac., gammal=1.5

0.5

"ol T Toals T

30 contours from 1.4 to 20.0 Grid:960x240 t=0.2

Density relaxed WENO-LF-5 partial charac., gammal=3.0

0.5

B e

30 contours from 1.4 to 20.0 Grid:960x240 t=0.2

Fic. 3.9. Double-Mach reflection, perfect gas, 960 x 240 grid points.

(see [6] for details)
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Density Real gas relaxed WENO-LF-5 partial charac., gammal=1.5

0.5

30 coﬁtoﬁrg!?rdm i.4‘to ‘31.10 ‘Gr‘id:4‘180‘xf50‘ tQO.é

Density Real gas relaxed WENO-LF-5 partial charac., gammal=1.5

0.5

30 contour€from 1.4t0 31°0 Grid:960x240 t=0.2  *
Fi1Gc. 3.10. Double-Mach reflection, two vibrating molecular gas.

where 4, H are the Roe-average values of the velocity and the total specific enthalpy (H = ¢+ 1/2u? +p/p)

PIuL + /prty
VIRV
(B.3) i = Yt oy

VPt /Pr

and y and R are two parameters which must satisfy

(B.2) i

(B.4) Ap = RApe + xAp

with Ap = p,. — p1, Ape = prer — prey and Ap = p(pr, &r) — p(p1, 1)

The definitions for & and  proposed by In [9] for a two molecular vibrating gas are

(BT ) = amey e =a=e

Ap—AkpApe if Pr # P,
(B.6) F=19 3p(p.e1) = Lpe(p.cr) +pp(p,er) — Zpe(pser))

=1r(T(e) — aT'(e1) + T(er) — & T (1)) if p. = pr = p.
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The definitions of the eigenvalues and right and left eigenvectors are easy to obtain and are omitted

here.
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